Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.117
Filtrar
1.
Int Immunopharmacol ; 134: 112199, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38713938

RESUMEN

Asthma is a prevalent chronic respiratory disease, yet understanding its ecology and pathogenesis remains a challenge. Trim27, a ubiquitination ligase belonging to the TRIM (tripartite motif-containing) family, has been implicated in regulating multiple pathophysiological processes such as inflammation, oxidative stress, apoptosis, and cell proliferation. However, the role of Trim27 in asthma has not been investigated. Our study found that Trim27 expression significantly increases in the airway epithelium of asthmatic mice. Knockdown of Trim27 expression effectively relieved ovalbumin (OVA)-induced airway hyperresponsiveness (AHR) and lung tissue histopathological changes. Moreover, Trim27 knockdown exhibited a significant reduction in airway inflammation and oxidative stress in asthmatic mice, and in vitro analysis confirmed the favorable effect of Trim27 deletion on inflammation and oxidative stress in mouse airway epithelial cells. Furthermore, our study revealed that deletion of Trim27 in MLE12 cells significantly decreased NLRP3 inflammasome activation, as evidenced by reduced expression of NLRP3, ASC, and pro-IL-1ß mRNA. This downregulation was reversed when Trim27, but not its mutant lacking ubiquitination ligase activity, was replenished in these cells. Consistent with these findings, protein levels of NLRP3, pro-caspase-1, pro-IL-1ß, cleaved-caspase-1, and cleaved-IL-1ß were higher in Trim27-replenished cells compared to cells expressing Trim27C/A. Functionally, the downregulation of IL-1ß and IL-18 levels induced by Trim27 deletion was rescued by replenishing Trim27. Overall, our findings provide evidence that Trim27 contributes to airway inflammation and oxidative stress in asthmatic mice via NLRP3 inflammasome activation, providing crucial insights into potential therapeutic interventions targeting Trim27 as a way to treat asthma.

2.
Heliyon ; 10(9): e30214, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707310

RESUMEN

Background: Accumulating small unruptured intracranial aneurysms are detected due to the improved quality and higher frequency of cranial imaging, but treatment remains controversial. While surgery or endovascular treatment is effective for small aneurysms with a high risk of rupture, such interventions are unnecessary for aneurysms with a low risk of rupture. Consequently, it is imperative to accurately identify small aneurysms with a low risk of rupture. The purpose of this study was to develop a clinically practical model to predict small aneurysm ruptures based on a radiomics signature and clinical risk factors. Methods: A total of 293 patients having an aneurysm with a diameter of less than 5 mm, including 199 patients (67.9 %) with a ruptured aneurysm and 94 patients (32.1 %) without a ruptured aneurysm, were included in this study. Digital subtraction angiography or surgical treatment was required in all cases. Data on the clinical risk factors and the features on computed tomography angiography images associated with the aneurysm rupture status were collected simultaneously. We developed a clinical-radiomics model to predict aneurysm rupture status using multivariate logistic regression analysis. The combined clinical-radiomics model was constructed by nomogram analysis. The diagnostic performance, clinical utility, and model calibration were evaluated by operating characteristic curve analysis, decision curve analysis, and calibration analysis. Results: A combined clinical-radiomics model (Area Under Curve [AUC], 0.85; 95 % confidence interval [CI], 0.757-0.947) showed effective performance in the operating characteristic curve analysis. In the validation cohort, the performance of the combined model was better than that of the radiomics model (AUC, 0.75; 95 % CI, 0.645-0.865; Delong's test p-value = 0.01) and the clinical model (AUC, 0.74; 95 % CI, 0.625-0.851; Delong's test p-value <0.01) alone. The results of the decision curve, nomogram, and calibration analyses demonstrated the clinical utility and good fitness of the combined model. Conclusion: Our study demonstrated the effectiveness of a clinical-radiomics model for predicting rupture status in small aneurysms.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38709954

RESUMEN

Sonophotodynamic antimicrobial therapy (SPDAT) is recognized as a highly efficient biomedical treatment option, known for its versatility and remarkable healing outcomes. Nevertheless, there is a scarcity of sonophotosensitizers that demonstrate both low cytotoxicity and exceptional antibacterial effectiveness in clinical applications. In this paper, a novel ZnO nanowires (NWs)@TiO2-xNy core-sheath composite was developed, which integrates the piezoelectric effect and heterojunction to build dual built-in electric fields. Remarkably, it showed superb antibacterial effectiveness (achieving 95% within 60 min against S. aureus and ∼100% within 40 min against E. coli, respectively) when exposed to visible light and ultrasound. Due to the continuous interference caused by light and ultrasound, the material's electrostatic equilibrium gets disrupted. The modification in electrical properties facilitates the composite's ability to attract bacterial cells through electrostatic forces. Moreover, Zn-O-Ti and Zn-N-Ti bonds formed at the interface of ZnO NWs@TiO2-xNy, further enhancing the dual internal electric fields to accelerate the excited carrier separation to generate more reactive oxygen species (ROS), and thereby boosting the antimicrobial performance. In addition, the TiO2 layer limited Zn2+ dissolution into solution, leading to good biocompatibility and low cytotoxicity. Lastly, we suggest a mechanistic model to offer practical direction for the future development of antibacterial agents that are both low in toxicity and high in efficacy. In comparison to the traditional photodynamic therapy systems, ZnO NWs@TiO2-xNy composites exhibit super piezo-photocatalytic antibacterial activity with low toxicity, which shows great potential for clinical application as an antibacterial nanomaterial.

4.
Front Endocrinol (Lausanne) ; 15: 1310223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706697

RESUMEN

Objective: The present study was to investigate three different single-drug regimens to show which was more effective to reduce radioactive iodine therapy (RAI) associated nausea and vomiting, and to compare the occurrence of long-term gastrointestinal diseases after RAI therapy. Method: We performed a single-center, non-randomized clinical trial among patients who underwent RAI therapy from March 2016 to July 2022. Enrolled patients were divided into four cohorts based on the date of the treatment. cohort 1, with no preventive antiemetics; cohort 2, received 20 mg of pantoprazole per day for 3 days; cohort 3, received a 10 mg metoclopramide tablet two times daily for 3 days; cohort 4, oral ondansetron, 8 mg, twice daily for 3 days. The primary endpoints were proportion of patients who experience vomiting episodes and nausea during the 7-day hospital period. Secondary end points included Functional Living Index Emesis (FLIE) quality-of life questionnaires and the occurrence of gastrointestinal diseases. Results: A total of 1755 patients were analyzed, comprised of 1299 (74.0%) women and 456 (26.0%) men, with a median age of 44 years (range 18-78 years). The characteristics of patient were similar within the four groups. 465 (26.4%) patients developed RAI-associated nausea, and 186 (14.4%) patients developed RAI-associated vomiting. The rate of nausea was significantly decreased in the patients who were taking ondansetron when compared with the other cohorts (P<0.05), while the rate of vomiting (≥6 episodes) was slightly lower. As secondary endpoint, FLIE measures ondansetron scored highly compared to other cohorts, from baseline (mean score of 110.53 ± 17.54) to day 7 (mean score of 105.56 ± 12.48). In addition, 48 (2.7%) patients were found to be with gastrointestinal diseases at the end of one year follow up. Multiple RAI therapy and higher dose of I-131 per body weight revealed a significantly independent risk factors of developing gastrointestinal disorders. Conclusions: In conclusion, the present study demonstrated that short-term ondansetron could be an effective prophylactic agent in controlling RAI-associated nausea and vomiting. Furthermore, the risk of developing gastrointestinal disorders was significantly higher for patients with multiple RAI therapy and higher dose of I-131 per body weight.


Asunto(s)
Antieméticos , Radioisótopos de Yodo , Náusea , Neoplasias de la Tiroides , Vómitos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Antieméticos/uso terapéutico , Antieméticos/administración & dosificación , Adulto , Radioisótopos de Yodo/uso terapéutico , Radioisótopos de Yodo/efectos adversos , Anciano , Vómitos/prevención & control , Vómitos/etiología , Náusea/prevención & control , Náusea/etiología , Adulto Joven , Adolescente , Neoplasias de la Tiroides/radioterapia , Ondansetrón/uso terapéutico , Ondansetrón/administración & dosificación , Calidad de Vida
5.
Exp Gerontol ; 190: 112428, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604253

RESUMEN

BACKGROUND: Mitochondrial dysregulation in skeletal myocytes is considered a major factor in aged sarcopenia. In this study, we aimed to study the effects of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) on Sestrin2-mediated mechanistic target of rapamycin complex 1 (mTORC1) in aged skeletal muscles. METHODS: C2C12 myoblasts were stimulated by 50 µM 7ß-hydroxycholesterol (7ß-OHC) to observe the changes of DNA damage, mitochondrial membrane potential (Δψm), mitochondrial ROS and PGC-1α protein. The PGC-1α silence in the C2C12 cells was established by siRNA transfection. The levels of DNA damage, Δψm, mitochondrial ROS, Sestrin2 and p-S6K1/S6K1 proteins were observed after the PGC-1α silence in the C2C12 cells. Recombinant Sestrin2 treatment was used to observe the changes of DNA damage, Δψm, mitochondrial ROS and p-S6K1/S6K1 protein in the 7ß-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. Wild-type (WT) mice and muscle-specific PGC-1α conditional knockout (MKO) mice, including young and old, were used to analyse the effects of PGC-1α on muscle function and the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles. Recombinant Sestrin2 was administrated to analyse its effects on muscle function in the old WT mice and old MKO mice. RESULTS: 7ß-OHC treatment induced DNA damage, mitochondrial dysfunction and decrease of PGC-1α protein in the C2C12 cells. PGC-1α silence also induced DNA damage and mitochondrial dysfunction in the C2C12 cells. Additionally, PGC-1α silence or 7ß-OHC treatment decreased the levels of Sestrin2 and p-S6K1/S6K1 protein in the C2C12 cells. Recombinant Sestrin2 treatment significantly improved the DNA damage and mitochondrial dysfunction in the 7ß-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. At the same age, muscle-specific PGC-1α deficiency aggravated aged sarcopenia and decreased the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles when compared to the WT mice. Recombinant Sestrin2 treatment improved muscle function and increased p-S6K1 levels in the old two genotypes. CONCLUSION: This research demonstrates that PGC-1α participates in regulating mitochondrial function in aged sarcopenia through effects on the Sestrin2-mediated mTORC1 pathway.


Asunto(s)
Daño del ADN , Diana Mecanicista del Complejo 1 de la Rapamicina , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Quinasas S6 Ribosómicas 90-kDa , Sarcopenia , Sestrinas , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Sarcopenia/metabolismo , Ratones Noqueados , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno/metabolismo , Envejecimiento/fisiología , Envejecimiento/metabolismo , Transducción de Señal , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Masculino , Músculo Esquelético/metabolismo , Línea Celular , Mitocondrias/metabolismo , Peroxidasas/metabolismo , Ratones Endogámicos C57BL , Mioblastos/metabolismo
6.
Lancet Reg Health West Pac ; 46: 101062, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38623390

RESUMEN

Background: The public health burden of cardiomyopathies and competency in their management by health agencies in China are not well understood. Methods: This study adopted a multi-stage sampling method for hospital selection. In the first stage, nationwide tertiary hospital recruitment was performed. As a result, 88 hospitals with the consent of the director of cardiology and access to an established electronic medical records system, were recruited. In the second stage, we sampled 66 hospitals within each geographic-economic stratification through a random sampling process. Data on (1) the outpatient and inpatient visits for cardiomyopathies between 2017 and 2021 and (2) the competency in the management of patients with cardiomyopathies, were collected. The competency of a hospital to provide cardiomyopathy care was evaluated using a specifically devised scale. Findings: The outpatient and inpatient visits for cardiomyopathies increased between 2017 and 2021 by 38.6% and 33.0%, respectively. Most hospitals had basic facilities for cardiomyopathy assessment. However, access to more complex procedures was limited, and the integrated management pathway needs improvement. Only 4 (6.1%) of the 66 participating hospitals met the criteria for being designated as a comprehensive cardiomyopathy center, and only 29 (43.9%) could be classified as a primary cardiomyopathy center. There were significant variations in competency between hospitals with different administrative and economic levels. Interpretation: The health burden of cardiomyopathies has increased significantly between 2017 and 2021 in China. Although most tertiary hospitals in China can offer basic cardiomyopathy care, more advanced facilities are not yet universally available. Moreover, inconsistencies in the management of cardiomyopathies across hospitals due to differing administrative and economic levels warrants a review of the nation allocation of medical resources. Funding: This work was supported by the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2023-I2M-1-001) and the National High Level Hospital Clinical Research Funding (2022-GSP-GG-17).

7.
J Hazard Mater ; 470: 134156, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565015

RESUMEN

While antimony (Sb) and arsenic (As) co-contamination in subsurface soil systems due to the legacy of Sb smelting wastes has been documented, the role of inherent heterogeneity on pollutant migration is largely overlooked. Herein this study investigated Sb and As migration in a slag impacted, vertically stratified subsurface at an abandoned Sb smelter. A 2-dimensional flume was assembled as a lab-scale analogue of the site and subject to rainfall and stop-rain events. Reactive transport modeling was then performed by matching the experimental observations to verify the key factors and processes controlling pollutant migration. Results showed that rainfall caused Sb and As release from the shallow slag layer and promoted their downward movement. Nevertheless, the less permeable deeper layers limited physical flow and transport, which led to Sb and As accumulation at the interface. The re-adsorption of Sb and As onto iron oxides in the deeper, more acidic layers further retarded their migration. Because of the large difference between Sb and As concentrations, Sb re-adsorption was much less effective, which led to higher mobility. Our findings overall highlight the necessity of understanding the degree and impacts of physicochemical heterogeneity for risk exposure assessment and remediation of abandoned Sb smelting sites.

9.
J Ethnopharmacol ; 329: 118164, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38593963

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Epimedium sagittatum (Sieb. et Zucc.) Maxim. has been used traditionally in Asia. It can dispel wind and cold, tonify the kidney, and strengthen bones and tendons. However, adverse effects of E. sagittatum have been reported, and the underlying mechanisms remain unclear. AIM OF THE STUDY: This study aimed to investigate liver injury caused by an aqueous extract of E. sagittatum in Institute of Cancer Research (ICR) mice and explore its potential mechanisms. MATERIALS AND METHODS: Dried E. sagittatum leaves were decocted in water to prepare aqueous extracts for ultra-high performance liquid chromatography analysis. Mice were administered an aqueous extract of E. sagittatum equivalent to either 3 g raw E. sagittatum/kg or 10 g raw E. sagittatum/kg once daily via intragastric injection for three months. The liver weights and levels of the serum biochemical parameters including alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total bilirubin (TBIL), and alkaline phosphatase were measured. Hematoxylin-eosin staining was performed for histopathology. Apoptosis was detected using the TUNEL apoptosis assay kit. IL-1ß was detected using ELISA kits. Proteomics was used to identify the differentially expressed proteins. Western blot analysis was performed to determine the levels of proteins significantly affected by the aqueous extract of E. sagittatum. RESULTS: E. sagittatum treatment increased the liver weights and liver coefficients, and ALT and AST levels significantly increased (p < 0.05). A high dose of E. sagittatum significantly increased LDH and TBIL levels (p < 0.05). Ruptured cell membranes and multiple sites of inflammatory cell infiltration were also observed. No evidence of apoptosis was observed. IL-1ß levels were significantly increased (p < 0.05). The expressions of PIK3R1, p-MAP2K4, p-Jun N-terminal kinase (JNK)/JNK, p-c-Jun, VDAC2, Bax, and CYC were upregulated, whereas that of Bcl-2 was inhibited by E. sagittatum. The expression of cleaved caspase-1 was significantly increased; however, its effects on GSDMD and GSDMD-N were significantly decreased. The expression levels of cleaved caspase-3 and its effector proteins GSDME and GSDME-N significantly increased. CONCLUSIONS: Our results suggest that the aqueous extract of E. sagittatum induces liver injury in ICR mice after three months of intragastric injection via inflammatory pyroptosis.

10.
Heliyon ; 10(7): e27979, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596066

RESUMEN

Background: The clinically meaningful cardiac troponin I (cTnI) threshold associated with the long-term prognosis in patients undergoing elective percutaneous coronary intervention (PCI) is still debated. Objective: To assess the association between different thresholds for post-procedural cTnI and 5-year mortality. Methods: The study included 4059 consecutive patients with normal baseline cTnI values who underwent elective PCI. The post-procedural cTnI level was measured at 8-48 h after PCI. The main study endpoints were 5-year all-cause mortality and cardiovascular mortality. Results: A cTnI ≥5 times the upper reference limit (URL) as defined by the fourth universal definition of myocardial infarction (4th UDMI), ≥35 times as defined by the Academic Research Consortium-2 criteria, and ≥70 times as defined by the Society for Cardiovascular Angiography and Interventions (SCAI [2014]) was identified in 33%, 6.6%, and 3.3% of patients, respectively. During 5 years of follow-up, the all-cause mortality rate was 3.4% (n = 132) and the cardiovascular mortality rate was 2.0% (n = 77). Both all-cause mortality and cardiovascular mortality increased with higher peak cTnI, and were independently predicted by a cTnI ≥70 times the URL (adjusted hazard ratio [HR] 2.45, 95% confidence interval [CI] 1.20-5.02 and adjusted HR 3.17, 95% CI 1.31-7.67, respectively; reference, cTnI <1 × URL]. The SCAI (2014) threshold was significantly associated with 5-year cardiovascular mortality (adjusted HR 2.66, 95% CI 1.20-5.89; reference, cTnI, <70 × URL) and all-cause mortality (adjusted HR 2.23, 95% CI 1.16-4.30; reference, cTnI <70 × URL). Conclusion: In patients with normal pre-procedural cTnI who underwent elective PCI, a post-procedural cTnI ≥70 times the URL independently predicted 5-year all-cause and cardiovascular mortality. Therefore, only the SCAI (2014) post-procedural cTnI threshold was independently associated with long-term mortality.

11.
Cardiovasc Diabetol ; 23(1): 143, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664806

RESUMEN

AIMS: Risk assessment for triple-vessel disease (TVD) remain challenging. Stress hyperglycemia represents the regulation of glucose metabolism in response to stress, and stress hyperglycemia ratio (SHR) is recently found to reflect true acute hyperglycemic status. This study aimed to evaluate the prognostic value of SHR and its role in risk stratification in TVD patients with acute coronary syndrome (ACS). METHODS: A total of 3812 TVD patients with ACS with available baseline SHR measurement were enrolled from two independent centers. The endpoint was cardiovascular mortality. Cox regression was used to evaluate the association between SHR and cardiovascular mortality. The SYNTAX (Synergy Between Percutaneous Coronary Intervention With Taxus and Cardiac Surgery) II (SSII) was used as the reference model in the model improvement analysis. RESULTS: During a median follow-up of 5.1 years, 219 (5.8%) TVD patients with ACS suffered cardiovascular mortality. TVD patients with ACS with high SHR had an increased risk of cardiovascular mortality after robust adjustment for confounding (high vs. median SHR: adjusted hazard ratio 1.809, 95% confidence interval 1.160-2.822, P = 0.009), which was fitted as a J-shaped pattern. The prognostic value of the SHR was found exclusively among patients with diabetes instead of those without diabetes. Moreover, addition of SHR improved the reclassification abilities of the SSII model for predicting cardiovascular mortality in TVD patients with ACS. CONCLUSIONS: The high level of SHR is associated with the long-term risk of cardiovascular mortality in TVD patients with ACS, and is confirmed to have incremental prediction value beyond standard SSII. Assessment of SHR may help to improve the risk stratification strategy in TVD patients who are under acute stress.


Asunto(s)
Síndrome Coronario Agudo , Biomarcadores , Glucemia , Enfermedad de la Arteria Coronaria , Hiperglucemia , Humanos , Síndrome Coronario Agudo/mortalidad , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/diagnóstico , Síndrome Coronario Agudo/terapia , Masculino , Femenino , Persona de Mediana Edad , Anciano , Medición de Riesgo , Factores de Tiempo , Hiperglucemia/diagnóstico , Hiperglucemia/mortalidad , Hiperglucemia/sangre , Glucemia/metabolismo , Factores de Riesgo , Biomarcadores/sangre , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/terapia , Valor Predictivo de las Pruebas , Pronóstico , Estudios Retrospectivos , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/mortalidad , China/epidemiología
12.
J Neurosci ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688721

RESUMEN

The mouse auditory organ cochlea contains two types of sound receptors: inner hair cells (IHCs) and outer hair cells (OHCs). Tbx2 is expressed in IHCs but repressed in OHCs, and neonatal OHCs that misexpress Tbx2 transdifferentiate into IHC-like cells. However, the extent of this switch from OHCs to IHC-like cells and the underlying molecular mechanism remain poorly understood. Furthermore, whether Tbx2 can transform fully mature adult OHCs into IHC-like cells is unknown. Here, our single-cell transcriptomic analysis revealed that in neonatal OHCs misexpressing Tbx2, 85.6% of IHC genes, including Slc17a8, are upregulated, but only 38.6% of OHC genes, including Ikzf2 and Slc26a5, are downregulated. This suggests that Tbx2 cannot fully reprogram neonatal OHCs into IHCs. Moreover, Tbx2 also failed to completely reprogram cochlear progenitors into IHCs. Lastly, restoring Ikzf2 expression alleviated the abnormalities detected in Tbx2+ OHCs, which supports the notion that Ikzf2 repression by Tbx2 contributes to the transdifferentiation of OHCs into IHC-like cells. Our study evaluates the effects of ectopic Tbx2 expression on OHC lineage development at distinct stages of either male or female mice and provides molecular insights into how Tbx2 disrupts the gene-expression profile of OHCs. This research also lays the groundwork for future studies on OHC regeneration.Significance Statement Elucidation of the molecular and genetic mechanisms governing the determination and stability of cochlear inner hair cells (IHCs) and outer hair cells (OHCs) should provide valuable insights into the regeneration of damaged IHCs and OHCs. Here, we conditionally overexpress Tbx2 in vivo in cochlear sensory progenitors, neonatal OHCs, or adult OHCs. Our results show that Tbx2 overexpression alone can partially destabilize the OHC fate but cannot fully convert OHCs into IHCs. Specifically, we demonstrate that Ikzf2 repression due to Tbx2 overexpression is one of the key pathways disrupting the OHC fate.

13.
Neurocrit Care ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506972

RESUMEN

BACKGROUND: Frequency of imaging markers (FIM) has been identified as an independent predictor of hematoma expansion in patients with intracerebral hemorrhage (ICH), but its impact on clinical outcome of ICH is yet to be determined. The aim of the present study was to investigate this association. METHODS: This study was a secondary analysis of our prior research. The data for this study were derived from six retrospective cohorts of ICH from January 2018 to August 2022. All consecutive study participants were examined within 6 h of stroke onset on neuroimaging. FIM was defined as the ratio of the number of imaging markers on noncontrast head tomography (i.e., hypodensities, blend sign, and island sign) to onset-to-neuroimaging time. The primary poor outcome was defined as a modified Rankin Scale score of 3-6 at 3 months. RESULTS: A total of 1253 patients with ICH were included for final analysis. Among those with available follow-up results, 713 (56.90%) exhibited a poor neurologic outcome at 3 months. In a univariate analysis, FIM was associated with poor prognosis (odds ratio 4.36; 95% confidence interval 3.31-5.74; p < 0.001). After adjustment for age, Glasgow Coma Scale score, systolic blood pressure, hematoma volume, and intraventricular hemorrhage, FIM was still an independent predictor of worse prognosis (odds ratio 3.26; 95% confidence interval 2.37-4.48; p < 0.001). Based on receiver operating characteristic curve analysis, a cutoff value of 0.28 for FIM was associated with 0.69 sensitivity, 0.66 specificity, 0.73 positive predictive value, 0.62 negative predictive value, and 0.71 area under the curve for the diagnosis of poor outcome. CONCLUSIONS: The metric of FIM is associated with 3-month poor outcome after ICH. The novel indicator that helps identify patients who are likely within the 6-h time window at risk for worse outcome would be a valuable addition to the clinical management of ICH.

14.
J Geriatr Cardiol ; 21(2): 232-241, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38544497

RESUMEN

BACKGROUND: The prognostic value of coronary collateral circulation (CC) in patients undergoing chronic total occlusion (CTO) percutaneous coronary intervention (PCI) is underdetermined. The purpose of the study was to assess the prognostic value of current two CC grading systems and their association with long-term outcomes in patients with CTO underwent PCI. METHODS: We consecutively enrolled patients with single-vessel CTO underwent PCI between January 2010 and December 2013. All patients were categorized into well-developed or poor-developed collaterals group according to angiographic Werner's CC (grade 2 vs. grade 0-1) or Rentrop (grade 3 vs. grade 0-2) grading system. The primary endpoint was 5-year cardiac death. RESULTS: Of 2452 enrolled patients, the overall technical success rate was 74.1%. Well-developed collaterals were present in 686 patients (28.0%) defined by Werner's CC grade 2, and in 1145 patients (46.7%) by Rentrop grade 3. According to Werner's CC grading system, patients with well-developed collaterals had a lower rate of 5-year cardiac death compared with those with poor-developed collaterals (1.6% vs. 3.3%, P = 0.02), those with suboptimal recanalization was associated with higher rate of 5-year cardiac death compared with optimal recanalization (4.7% vs. 0.8%, P = 0.01) and failure patients (4.7% vs. 1.6%, P = 0.12). However, the similar effect was not shown in Rentrop grading system. CONCLUSIONS: In patients with the single-vessel CTO underwent PCI, well-developed collaterals by Werner's CC definition were associated with lower rate of 5-year cardiac death. Werner's CC grading system had a greater prognostic value than Rentrop grading system in patients with CTO underwent PCI.

15.
J Chem Inf Model ; 64(8): 3105-3113, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516950

RESUMEN

Molecular property prediction is a fundamental task of drug discovery. With the rapid development of deep learning, computational approaches for predicting molecular properties are experiencing increasing popularity. However, these existing methods often ignore the 3D information on molecules, which is critical in molecular representation learning. In the past few years, several self-supervised learning (SSL) approaches have been proposed to exploit the geometric information by using pre-training on 3D molecular graphs and fine-tuning on 2D molecular graphs. Most of these approaches are based on the global geometry of molecules, and there is still a challenge in capturing the local structure and local interpretability. To this end, we propose local geometry-guided graph attention (LGGA), which integrates local geometry into the attention mechanism and message-passing of graph neural networks (GNNs). LGGA introduces a novel method to model molecules, enhancing the model's ability to capture intricate local structural details. Experiments on various data sets demonstrate that the integration of local geometry has a significant impact on the improved results, and our model outperforms the state-of-the-art methods for molecular property prediction, establishing its potential as a promising tool in drug discovery and related fields.


Asunto(s)
Descubrimiento de Drogas , Redes Neurales de la Computación , Descubrimiento de Drogas/métodos , Modelos Moleculares , Aprendizaje Profundo
16.
Sci Total Environ ; 926: 172016, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38547999

RESUMEN

Vegetables are the most consumed non-staple food globally, and their production is crucial for dietary diversity and public health. Use of enhanced-efficiency fertilizers (EEFs) in vegetable production could improve vegetable yield and quality while reducing reactive nitrogen (Nr) losses. However, different management and environmental factors has significantly distinctive impacts on the effectiveness of EEFs. In this study, a worldwide meta-analysis based on the data collected from 144 studies was performed to assess the impacts of EEF (nitrification inhibitor [NI] and polymer-coated urea [PCU]) application on vegetable yield, nitrogen (N) uptake, nitrogen use efficiency (NUE), vegetable quality and Nr losses (nitrous oxide [N2O] emissions, ammonia [NH3] volatilization, and nitrate [NO3-] leaching). The effects of the applied EEFs on vegetable yields and N2O emissions were assessed with different management practices (cultivation system, vegetable type and N application rate) and environmental conditions (climatic conditions and soil properties). Compared to conventional fertilizers, EEFs significantly improved vegetable yield (7.5-8.1 %) and quality (vitamin C increased by 10.7-13.6 %, soluble sugar increased by 9.3-10.9 %, and nitrate content reduced by 17.2-25.1 %). Meanwhile, the application of EEFs demonstrated a great potential for Nr loss reduction (N2O emissions reduced by 40.5 %, NO3- leaching reduced by 45.8 %) without compromising vegetable yield. The NI was most effective in reducing N2O emissions (40.5 %), but it significantly increased NH3 volatilization (32.4 %). While PCU not only significantly reduced N2O emissions (24.4 %) and NO3- leaching (28.7 %), but also significantly reduced NH3 volatilization (74.5 %). And N application rate, soil pH, and soil organic carbon (SOC) were the main factors affecting the yield and environmental effects of EEFs. Moreover, the yield-enhancing effect of NI and PCU were better at low soil N availability and SOC, respectively. Thus, it is important to adopt the appropriate EEF application strategy targeting specific environmental conditions and implement it at the optimal N application rate.


Asunto(s)
Suelo , Verduras , Suelo/química , Agricultura , Nitrógeno/análisis , Fertilizantes/análisis , Carbono , Nitratos , Óxido Nitroso/análisis , Amoníaco/análisis , Urea
18.
Artículo en Inglés | MEDLINE | ID: mdl-38430163

RESUMEN

Background: A traditional Chinese medicine (TCM) formula, containing Astragalus membranaceus (Fisch.) Bunge, Aconitum wilsonii Stapf ex Veitch, Curcuma longa L., and Radix ophiopogonis (AACO), has therapeutic value for the treatment of chronic heart failure (CHF). Objective: This study intends to explore the pharmacological mechanism underlying the activity of the AACO formula against CHF. Materials and Methods: Using the TCM Systems Pharmacology database and Bioinformatics Analysis Tool for Molecular Mechanism of TCM, the active ingredients contained in the herbs of the AACO formula were screened. Meanwhile, the target genes related to these active ingredients were identified and genes correlated with CHF were screened. Protein-protein interaction networks were built to elucidate the relationships between the AACO formula and CHF. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis were carried out using the DAVID database. A "drug-component-target-disease" network was constructed with Cytoscape 3.7.0. The therapeutic effect of the AACO formula was proven by hemodynamic study, echocardiography evaluation, and histological analysis in transverse aortic constriction-induced CHF mice and was validated in vitro. Results: A total of 105 active ingredients and 1026 related targets were screened and identified, and 240 related targets overlapping with CHF were selected. According to GO analysis, the enriched genes participated in gene expression and cardiac contraction regulation by Ca2+ regulation. From KEGG analysis, the calcium axis was identified as one of the main mechanisms through which the AACO formula exerts an anti-CHF effect. AACO was validated to significantly improve cardiac diastolic and systolic functions in vivo via an increase in the rate of Ca2+ reuptake of the myocardial sarcoplasmic reticulum and improved myocardial contractility in vitro. Conclusions: Network pharmacology is a convenient method to study the complex pharmacological mechanisms of TCM. The calcium axis likely participates in the anti-CHF mechanism of AACO.

19.
Int J Nanomedicine ; 19: 2301-2315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469056

RESUMEN

Introduction: As an effective alternative choice to traditional mono-therapy, multifunctional nanoplatforms hold great promise for cancer therapy. Based on the strategies of Fenton-like reactions and reactive oxygen species (ROS)-mediated therapy, black phosphorus (BP) nanoplatform BP@Cu2O@L-Arg (BCL) co-assembly of cuprous oxide (Cu2O) and L-Arginine (L-Arg) nanoparticles was developed and evaluated for synergistic cascade breast cancer therapy. Methods: Cu2O particles were generated in situ on the surface of the BP nanosheets, followed by L-Arg incorporation through electrostatic interactions. In vitro ROS/nitric oxide (NO) generation and glutathione (GSH) depletion were evaluated. In vitro and in vivo anti-cancer activity were also assessed. Finally, immune response of BCL under ultrasound was investigated. Results: Cu2O was incorporated into BP to exhaust the overexpressed intracellular GSH in cancer cells via the Fenton reaction, thereby decreasing ROS consumption. Apart from being used as biocompatible carriers, BP nanoparticles served as sonosensitizers to produce excessive ROS under ultrasound irradiation. The enhanced ROS accumulation accelerated the oxidation of L-Arg, which further promoted NO generation for gas therapy. In vitro experiments revealed the outstanding therapeutic killing effects of BCL under ultrasound via mechanisms involving GSH deletion and excessive ROS and NO generation. In vivo studies have illustrated that the nanocomplex modified the immune response by promoting macrophage and CD8+ cell infiltration and inhibiting MDSC infiltration. Discussion: BCL nanoparticles exhibited multifunctional characteristics for GSH depletion-induced ROS/NO generation, making a new multitherapy strategy for cascade breast cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Especies Reactivas de Oxígeno , Óxido Nítrico , Arginina , Glutatión , Línea Celular Tumoral , Peróxido de Hidrógeno , Microambiente Tumoral
20.
Sci Rep ; 14(1): 5208, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433283

RESUMEN

Environmental regulations are important means to influence manufacturing enterprise green development. However, there are two completely different conclusions both in theoretical and in empirical research, namely the "Follow Cost" theory and the "Porter Hypothesis". The nonlinear mechanism needs to be considered. Therefore, this study aims to explain the threshold impact of heterogeneous environmental regulations on enterprise green total factor productivity. Environmental regulations are divided into different sub-categories, then based on the panel data of 1220 Chinese manufacturing listed companies from 2011 to 2020, this paper uses threshold regression model to examine the impact of heterogeneous environmental regulations on Chinese manufacturing enterprise Green Total Factor Productivity. The empirical results show that: (1) Command-controlled, market-incentive and voluntary-agreement environmental regulation all have a significant nonlinear impact on enterprise Green Total Factor Productivity. (2) Enterprise R&D investment plays a threshold role in the impact. (3) There are industry and equity type differences in the impact process. This study focuses on the micro level of enterprises and tests the threshold mechanism, which make some theoretical complement to previous researches. The research results are not only beneficial for the government to propose appropriate environmental regulatory policies, but also for enterprises to achieve green growth through heterogeneous R&D investment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA